The S-8110ANP is a ultra-small packaged high-precision temperature sensor IC that outputs voltage with a temperature coefficient of -8.5mV/°C, and is able to operate at 2.4V. A temperature sensor, a constant current circuit and an operational amplifier are integrated on a single chip. The operating temperature ranges from -40°C to +100°C. The S-8110ANP is superior in linearity over conventional temperature sensors like thermistors. It can be applied to an ever expanding wide range of applications that call for high-precision thermal control.

Features
- **Linear Output Voltage**: -8.5mV/°C
 - $T_a = -30°C$: 1.823 V typ.
 - $T_a = +30°C$: 1.326 V typ.
 - $T_a = +100°C$: 0.718 V typ.
- **Nonlinearity**: ± 0.5% typ. (-20°C to +80°C)
- **Vss standard output**
- **Low voltage operation**: Vdd min. = 2.4 V
- **Low current consumption**: Idd typ. = 4.5µA (+25°C)
- **Ultra-small plastic package**: (SC-82AB)

Pin Assignment

```
SC-82AB

1  2  3  4

1. Vdd
2. Vss
3. N.C.
4. Vout

(Top view)
```
LOW VOLTAGE C-MOS TEMPERATURE SENSOR IC
S-8110ANP

- Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage(Vss=0.0V)</td>
<td>Vdd</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>Vout</td>
<td>Vss to Vdd</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Topr</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

- Electrical characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage(Vss=0.0V)</td>
<td>Vdd</td>
<td>Ta = -30°C</td>
<td>1.779</td>
<td>1.823</td>
<td>1.863</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = +30°C</td>
<td>1.272</td>
<td>1.326</td>
<td>1.356</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta = +100°C</td>
<td>0.665</td>
<td>0.718</td>
<td>0.749</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>Vout</td>
<td>-30 ≤ Ta ≤ +100°C</td>
<td>-8.84</td>
<td>-8.50</td>
<td>-8.18</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Temperature sensitivity</td>
<td>Vse</td>
<td>-20 ≤ Ta ≤ +80°C</td>
<td>—</td>
<td>±0.5</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Nonlinearity</td>
<td>△NL</td>
<td>-20 ≤ Ta ≤ +80°C</td>
<td>—</td>
<td>±0.5</td>
<td>—</td>
<td>%</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Topr</td>
<td>-40 ≤ Ta ≤ +100°C</td>
<td>—</td>
<td>—</td>
<td>+100</td>
<td>V</td>
</tr>
<tr>
<td>Current consumption</td>
<td>Idd</td>
<td>Ta = +25°C</td>
<td>—</td>
<td>4.5</td>
<td>10.0</td>
<td>μA</td>
</tr>
</tbody>
</table>
Definition of terms

1. Output voltage (Vout)

Output voltage Vout is defined as the voltage between measured pin-4 and Vss. Vout is linearly proportional to ambient temperature. S-8110ANP is tested for Vout at -30°C, +30°C and +100°C.

2. Temperature sensitivity (Vse)

Temperature sensitivity Vse is defined as the average slope of the Vout versus Ta curve using the following formula.

\[V_{se} = \frac{(V_{out}(+100) - V_{out}(-30))}{130} \]

Vout(+100): Output voltage at Ta=+100°C
Vout(-30): Output voltage at Ta= -30°C

3. Nonlinearity (NL)

Nonlinearity \(\triangle NL \) is defined as the deviation of the Vout versus Ta curve from the best-fit straight line over the device’s rated temperature range.

\[\triangle NL = \frac{a}{b} \times 100 \]

a: The maximum deviation of the Vout vs. Ta curve from the best-fit straight line between -20°C and +80°C.
b: The difference of the output voltage between -20°C and +80°C.
Load conditions

Load capacitance: \(C_L \leq 100\,\text{pF} \)
Load resistance: \(R_L \geq 500\,\text{k}\,\Omega \)

(Note: Do NOT connect a pull-up resistor to Vout pin.)
Typical performance characteristics

- Ambient temperature (Ta) - Output voltage (Vout)
- Heat response (TYP) from 28°C air into 100°C air.
- Power supply voltage (Vdd) - Current consumption (Idd)
- Accuracy - Temperature
- The best-fit straight line: $V_{out} = -8.5\text{mV/°C} \times Ta'°C + 1556\text{mV}$
- Approximate temperature $Ta' - Ta [°C]$ - Output voltage
- Current consumption (Idd) [µA]
- Power supply voltage (Vdd) - Output voltage (Vout) $Ta=30°C$ (TYP)
- Power supply voltage (Vdd) - Output voltage (Vout) $Ta=100°C$ (TYP)
Start up response

Ta=25°C, CL=100pF, RL=10MΩ

V dd
(= 6V)

V out

50 µ sec/div

Ta=25°C, CL=100pF, RL=10MΩ

V dd
(= 2.4V)

V out

50 µ sec/div
SC-82AB

- **Dimensions**

 Unit: mm

 ![Dimensions Diagram]

 No.: NP004-A-P-SD-1.0

- **Taping Specifications**

 1 reel holds 3000 ICs.

 ![Taping Specifications Diagram]

 No.: NP004-A-C-SD-1.0

- **Reel Specifications**

 ![Reel Specifications Diagram]

 No.: NP004-A-R-SD-1.0
The information herein is subject to change without notice.

Seiko Instruments Inc. is not responsible for any problems caused by circuits or other diagrams described herein whose industrial properties, patents or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee any mass-production design.

When the products described herein include Strategic Products (or Service) subject to regulations, they should not be exported without authorization from the appropriate governmental authorities.

The products described herein cannot be used as part of any device or equipment which influences the human body, such as physical exercise equipment, medical equipment, security system, gas equipment, vehicle or airplane, without prior written permission of Seiko Instruments Inc.